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A theory of circulation control by slot-blowing, 
applied to a circular cylinder 

By J. DUNHAM 
National Gas Turbine Establishment, Farnborough, Hampshire 

(Received 25 October 1967) 

Lift can be generated on a circular cylinder with its axis normal t o  an air flow 
by blowing a sheet of air tangentially round the upper surface from a narrow slot 
or slots. This lift force may be estimated by matching the external inviscid 
flow field with separation points calculated by Spalding’s unified boundary- 
layer theory. The theory reproduces experimental results reasonably well, 
except in certain special conditions fully discussed. 

1. Introduction 
It has long been known that the lift on a body in an air stream can be altered 

by controlling the boundary layer. In  1904, Prandtl demonstrated lift generation 
on a circular cylinder by suction on the upper surface. Boundary-layer control 
by blowing air through narrow tangential slots dates back to 1921, and flap- 
blowing systems are used in several current aircraft. The wall jet introduced 
through the slot re-energizes the boundary layer and delays its separation. This 
effect can be used to increase lift and to reduce drag, and this operation is re- 
ferred to in this paper as ’circulation control’ although this is a more restricted use 
of the term than that used by Lachmann (1961). There is an important distinction, 
too, between circulation control as studied here and a jet flap. Only a small 
amount of slot air is used in this circulation control, which in principle only re- 
energizes the boundary layer. A jet flap uses perhaps ten times as much air and 
adds a jet sheet to the inviscid flow field. A jet flap generates thrust as well 
as lift. 

In mathematical terms, the problem of calculating the two-dimensional flow 
field around a cylinder or aerofoil of given shape and incidence is indeterminate 
until the circulation around it is specified. The circulation around an aerofoil 
with a sharp trailing edge is fixed by the Kutta-Joukowski condition. In  the 
case of a rounded trailing edge, this simple condition is replaced by the general- 
ized condition that the boundary layer on the upper surface separates at almost 
exactly the same pressure as does the boundary layer on the lower surface 
(Thwaites 1960). Therefore the circulation can be increased by delaying the 
separation on the upper surface. It is confirmed experimentally that the upper 
and lower surface separation pressures remain equal even on a circulation-con- 
trolled circular cylinder, and this provides the essential link for matching the 
boundary-layer calculations with the inviscid flow calculations. It will be demon- 
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strated that this approach leads to a practicable way of estimating the lift 
generated on a circular cylinder by circulation control. The same method could 
be used for other shapes of cylinder. It was first tried by Howarth (1935) on a 
61 1 ellipse without boundary-layer control. 

Cheeseman (1966,1967) has proposed the application of circulation control to 
helicopter rotors. He devised a novel parkable rotor with blades of circular cross- 
section, on which lift would be generated by circulation control. The scope for 
moving the effective rear stagnation point and hence generating lift is obviously 
maximized by choosing a circular cylinder, though Cheeseman explained other 
important reasons for the choice too. The present theory was developed in the 
course of the parkable rotor project. 

2. The flow model 
Figure 1 shows the system considered. A circular cylinder with its axis normal 

to a uniform incident air flow has one or more narrow tangential slots S on the 
upper surface. Air is injected through these slots, which re-energizes the boundary 
layer and delays its separation until C. The whole flow field is assumed incom- 
pressible and two-dimensional, except that the flow through the slots themselves 
is calculated as one-dimensional compressible flow. The Reynolds number is 
assumed to be high enough to ensure turbulent separation, that is higher than 
about 3 x lo5. 

Slot width 
I 

9 
FIGURE 1. Circulation control. 

The essence of the method is the step-by-step calculation of the boundary 
layers round the surfaces, including downstream of a slot, by the method due to 
Spalding (1964), until a separation criterion is satisfied. The condition that the 
separation velocities on the upper and lower surfaces are equal is then used. 

The procedure is: (i) the lift coefficient is specified; (ii) the pressure distribution 
round the wetted surface is calculated from it; (iii) starting at  the front stagna- 
tion point A ,  the laminar boundary layer is calculated step by step round the 
lower surface to transition at some point D ;  (iv) the turbulent boundary layer is 
then calculated step by step until a separation criterion is satisfied, at E ;  hence 
the separation pressure is found;(v) turning now to the upper surface, the laminar 
followed by the turbulent boundary layer is calculated step by step, including 
the effect of the wall jet or jets, until a separation criterion is satisfied, at C ;  
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(vi) the strength of the wall jets is now adjusteduntil the upper surface separation 
pressure equals the previously calculated lower surface separation pressure. 

This (‘design’) procedure gives the wall-jet strength needed to generate the 
specified lift coefficient. To solve the inverse (‘prediction’) problem-given the 
wall-jet strength find the lift-iterations on the ‘design’ procedure can be made. 

Details of the individual steps are given in succeeding sections. The whole 
calculation has been programmed for a digital computer. 

3. Theory 3.1. Pressure distribution 

The simplest approximation to the pressure distribution on the wetted surface 
would be supplied by inviscid, incompressible, unseparated, potential flow 
theory. The flow around a circular cylinder is generated by adding a doublet to the 
free stream, giving 

velocity near surface 
free-stream velocity 

U =  = IZsinOl, 

where 8 = angle from leading edge (figure l), and the pressure distribution is 
given by 

surface static pressure - free-stream static pressure 
free-stream dynamic head 

C, = 

= 1 - u 2 .  

Figure 2 shows this result in comparison with measurements by Page & 
Falkner (1931) at a Reynolds number high enough to ensure turbulent separation. 
Any unseparated-flow theorypredicts a rear stagnation point, whereas in practice 
the boundary layers separate from both upper and lower surfaces, leaving a 
region of constant pressure round the back, the ‘base pressure’. Here the base 
pressure coefficient is C,, = - 0.52. All the calculated pressure distributions are 
presented truncated a t  the observed base pressure in this way, ignoring the 
theoretical rear stagnation point and its immediate neighbourhood. It will be 
seen that the separated-flow or wake region is so wide that the theory gives a 
very poor approximation to the pressure distribution. 

A source is therefore added to represent the displacement effect of the wake. 
If a source of arbitrary strength 

iCE x chord x free-stream velocity 

is placed at what would have been the rear stagnation point, 19 = 180°, and also a 
sink of half that strength is placed at  the centre of the circle, it can be shown 
(appendix) that no streamlines cross the surface and that 

Figure 2 also shows the pressure distribution this gives when C, = 3.6, and i t  
agrees fairly well with the experimental points. 

Because the calculated velocity distribution is truncated a t  the separation 
points, the singularity at the rear stagnation point due to the source is irrelevant. 

32 Fluid Mech. 33 
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When lift is generated, the flow model has a vortex of strength 

$7, x chord x free-stream velocity 

added at  the centre of the circle, and to maintain symmetry the source is moved 
round so as to remain at  what would have been the rear stagnation point, i.e. at  

8, = rr - front stagnation point. 

u = 2 sin 8 + - - 2 cot +(so - 0) ' (appendix). cs CF 
I Then I 2n 4rr 

100 200 
Angle round cylinder, 8" 

FIGURE 2. Pressure distribution at zero lift. 0, experiment, Fage & F a h e r  (1931). 

By choice of C,, the pressure distribution can be adjusted to  fit experimental 
results fairly well. Figure 3 shows some pressure distributions measured by Dun- 
ham (1967) (see 95). As the lift increases the wake contracts and the need for a 
source diminishes; above a lift coefficient C, of about five, simple potential flow 
is good enough. Figure 4 shows the variation of C, and C, best matching the 
quoted pressure distributions. 

If there were no separated flow region, the lift and drag coefficients would be 
simply C, and C, respectively (hence the notation); because of the constant base 
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pressure part of the surface C ,  slightly exceeds C, and C, greatly exceeds the 
drag coefficient. 

Inaccuracy in the assumed pressure distribution will cause an error in the 
calculated separation point, but the separation pressure, the important para- 
meter, is likely to be relatively little affected. 

- 7 r  

Angle round cylinder, 8” 

F I G ~ L E  3. Pressure distribution. 0, experiment, 
Dunham (1967); --- , doublet +vortex ; 

, doublet + vortex +source. 

Lift coefficient, G,  

FIGURE 4. CS and C E  required to 
match pressure distributions. 

3.2. Laminar boundary layer 

The method of Thwaites (1960) is used to calculate the development of the 
laminar boundary layer step by step from the front stagnation point to the 
transition point. 

momentum thickness 
chord 

6 =  

where Re = Reynolds number based on chord and free-stream conditions, 

s = surface distancelchord. 

Transition is assumed to occur either a t  the first slot, or when the velocity 
gradient becomes adverse, whichever occurs first. 

32-2 
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3.3. Turbulent boundary layer 

Spalding’s unified theory (Spalding 1964) is used to calculate the development 
of the turbulent boundary layer step by step from transition to any slots, and 
beyond them to separation. The essence of Spalding’s velocity profile is that it 
embraces boundary layers with a wall jet or without one, and, alone of methods 
then available, can treat the decay of a wall-jet boundary layer into a normal one. 

0 I 2 3 

Velocity 
Velocity outside boundary layer 

FIGURE 5. Boundary-layer velocity proses. 

Such a representation was considered essential to the present application, and 
was therefore adopted despite its relatively tentative status when first proposed. 
Spalding assumes a boundary-layer velocity profile 

local velocity within boundary layer 
local velocity just outside boundary layer 

x =  

2 
= 2 In t + XE + $( 1 - ZE) (1 - cos TE), 

1 

where 
distance from wall ‘ = boundary-layer thickness * 

This is a function of two parameters, I -  and zE;  1 can be regarded as a logarithmic 
Reynolds number, and zE represents the shape of the profile. If there is a wall jet, 
zE > 1 and is nearly proportional to the ratio of the peak wall-jet velocity to the 
local velocity outside the boundary layer. If there is no wall jet, zE < 1 and di- 
minishes towards separation. Figure 5 illustrates typical Spalding profiles. 

The theory calculates the development of zE,  1, and a third parameter R,, 
along the surface. R, is proportional to the mass flow within the boundary layer, 
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and Spalding expresses the entrainment into the boundary layer by the empirical 
equations 

!!!% = 0.06( 1 - z,)uRe (zE < 1)’ 

(zE > 1). 
ds 

= 0.03(zE- 1)uRe 

(These are the latest versions, given in the appendix to Spalding (1964).) 
The boundary-layer momentum equation is 

ZE 22% 
I 2  = 1-+(1-~E)(5+3~E)--  1 (0.411+ 1.589~,)+--  12 ’ 

- 2 (1.589 - 2.589 3) 1 
1 

The last term of the momentum equation uses the wall friction factor 

0-32z.k 
Cf = 12’ 

obtained by considering the forces at  the outer edge of the boundary layer. 

equation relating 1, zE and R,: 
One other equation is needed to complete the solution. This is the implicit 

I. 2-  6 1 68R,z, [ 0.51( 1 + zE) - ZE 1 =In  

Spalding’s parameters are related to the more familiar parameters of other 
boundary-layer theories by the equations : 

boundary-layer thickness yc = (--) Rna x chord, 
uIl Re 

momentum thickness 8, = (4 - 4 ) Y G ,  

shape factor H 1-Il 
- 11- 12’ 
-- 

Three changes have been made by the present author before applying the 
theory. 

The first concerns transition. The momentum thickness is assumed unchanged 
from the value given by Thwaites’s method at the end of the laminar portion. 
Then z, is assumed to be unity, so making the shape factor H = Z/(Z - 2)’ which 
takes the value 1.4 for a typical 1 of 7. H = 1-4 is often regarded as typical after 
transition. 

The second revision modifies Spalding’s entrainment law for jet flow (2, > 1) 
to take account of the increase in entrainment due to wall curvature. Stratford, 
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Jawor & Golesworthy (1962) suggested that the mixing length would be in- 
creased in the ratio 

where 
boundary-layer thickness 

mean radius of curvature of jet centre line 
a=--- 

and evaluated an effective mean value of x/az /a( .  This was somewhat arbitrary 
as az/a[ .+ 0 near the edge of the boundary layer, and their final expression im- 
plied very large entrainment rates for a particular value of zE slightly greater 
than unity. However, since the entrainment rate is proportional to 

which leads to an expression for entrainment uniformly applicable for all values 

dR, = 0.03uRe[(zE - 1) + 2 4 2 ,  + l)] (appendix). 

of ZE > 1: 

ds 

The third change from Spalding’s original method concerns separation. The 
success of the calculahion hinges on the assessment of separation pressure. In  
$4.2 of his paper, Spalding introduced the pressure gradient parameter 

where c = chord, 

appeared to correlate separation points. 

and showed that F2 = -0.004 

Later he introduced a separation criterion due to Stratford (1959) in the form 

where K is a numerical constant. For ‘typical’ zE and 1 values, comparison be- 
tween the two criteria led t o  K = 0.575, so that the separation criterion could 
alternatively be written 

The original F2 criterion cannot apply to wall-jet flow as it would never predict 
separation for zE > 1, but the revised form can be applied to both wall-jet flow 
and boundary-layer flow. Sample calculations for a blown circular cylinder gave 
slightly different ‘typical’ zE and 1 values, for which 
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fits separation better in figure 11 of Spalding (1964); furthermore, this corre- 
sponds more to the opinion of Townsend (1960) as to the value of K .  This last 
equation is therefore used as a separation criterion on both surfaces. 

3.4. S'lotJow 

The flow within a circulation control slot may be sonic or nearly sonic in many 
cases of practical interest even when the external flow is slow enough to justify 
treating it as incompressible. Therefore the slot flow is calculated on the basis 
of one-dimensional compressible flow theory, assuming it expands from the stag- 
nation pressure inside the slot to the local static pressure outside the slot. If the 
slot is choked, the effective momentum of the wall jet is taken as the thrust on a 
convergent slot at that pressure ratio. 

The wall-jet strength is expressed by its momentum coefficient 

wall-jet momentum 
- free-stream kinetic head x chord x span ' 

c -  

This is the parameter, sometimes called C,, often used in studying blown flaps 
and jet flaps. Expressions for C, in terms of slot width and blowing conditions 
are given in the appendix. 

At a slot, the existing boundary layer meets the wall jet, and for perhaps six 
slot widths downstream the velocity profile cannot conform to Spalding's pro- 
file assumptions. There is strong entrainment in this region, and a transverse 
pressure gradient must be present to align the wall jet with the mainstream and 
the wall. The fine detail of the flow is not known, but provided separation does 
not occur only the subsequent values of zE, 1 and R, are of interest. If the circula- 
tion control is working as it should, separation does not occur there, so the 
following procedure is adopted. The mass flow in the boundary layer immediately 
after the slot is assumed to be the sum of the existing boundary layer mass flow 
plus the wall-jet flow. Similarly, the momentum in the boundary layer immedi- 
ately after the slot is assumed to be the existing boundary-layer momentum plus 
the wall-jet momentum. These conditions suffice to define x E ,  1 and R, after the 
slot. They probably overestimate the peak velocity in the boundary layer, but 
may not be unreasonable as regards entrainment and skin friction, which de- 
pend on velocity gradient. 

4. Results 
Figure 6 shows the computed development of the turbulent boundary layer 

for a typical case. The lift coefficient is 4-48, the pressure distribution is the 
(doublet + vortex + source) pressure distribution shown in figure 3, and the two- 
slot arrangement assumed was that of the model on which the experimental 
pressure distribution of figure 3 was observed (see $ 5 ) .  The calculated boundary 
layer on the lower surface separated at 0 = 246.5" at a base pressure coefficient 
of just zero, as against - 0.1 measured. The calculated boundary layer on the 
upper surface separated at the same base pressure a t  6 = 169.7" provided a 
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momentum coefficient of 0.36 was injected (0.18 a t  each slot). I n  the correspond- 
ing experiment the momentum coefficient was in fact 0.32. 

The same results are replotted in figure 7 in terms of more familiar parameters. 
The laminar boundary layer is also shown. In  the wall-jet flow, the momentum 
thickness is negative and the shape factor is less than unity. The boundary-layer 
thickness may be compared with the slot widths of 0-024 and 0.026 in. The in- 
coming boundary layer is 0.011 in. at the first slot and 0.057 at the second slot. 
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FIGURE 6. Boundary-layer development: (a)  lower surface, ( b )  upper surface. 

The theory assumes only that the incoming boundary layer and the wall jet mix 
as if instantaneously into a Spalding profile, without regard to their relative 
width, and it will become clear later that this assumption is too optimistic when 
the incoming boundary layer is much wider than the wall jet. 

There are no measurements of boundary-layer development with which such 
calculations can be compared in detail. Only surface pressure distributions have 
been measured. Calculations can only be compared with experiments in respect 
of the base pressure and the lift generated by a given slot momentum. This is 
done for a range of slot geometry in the next section. 

5. Comparison with experiments 
Dunham (1967) summarized all the available experimental evidence. The 

number of independent variables is very large: Reynolds number, Mach 
number, the number of slots and their position, size and design. Examples have 
therefore been selected from some of the experiments to demonstrate the indi- 
vidual influence of these variables, and to see how well the theory reproduces the 
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results. Cases have been chosen to illustrate both the strength of the theory and 
its weaknesses. For clarity, each experiment is identified on the graphs by a code 
(e.g. R2B);  table 1 lists the test particulars for each code. All are wind-tunnel 
tests on two-dimensional models. Their cross-sections are reproduced in figure 8. 
The pressure distribution analysis (figure 3) was carried out on test R 2 B. 

When the lift coefficient is known or assumed to be known, the theory cal- 
culates the base pressure by considering the lower surface only. It follows that 

1.4 
0.04 

0.02 

0 , -  

0006 

0004 

0002 

d 
< La+nar boundary I 

-. layer 

-- 

-- 

O T  I I I I I 1  

8 -  
& .$ 
I- 

-0.2 
-22.4 100 120 140 160 

Angle round cylinder, 0" Angle round cylinder, 0" 

FIGURE 7. Boundary-layer development: (a)  lower surface, ( b )  upper surface. 

the base pressure coefficient is a function of lift coefficient and Reynolds 
number only; which slot arrangement is used to generate the lift does not affect 
the calculated base pressure. Measured base pressure coefficients from a wide 
range of tests should therefore condense to unique curves when suitably plotted. 
Figure 9 shows the predominant trend of results reported by Dunham (1967) a t  
or near a Reynolds number of 360,000, at which many tests were conducted. It 
will be seen that in practice there is some scatter, but the theoretical curve 
generally agrees well with measured values. 

Reynolds number can have an important influence on the flow. Below about 
2 x lo5 a laminar separation is found on an unblown cylinder. Above about 
4 x lo5 the laminar separation is followed quickly by re-attachment as a turbulent 
boundary layer which only separates much later. At  intermediate values what 
happens depends on model surface condition and free-stream turbulence, and 
the fact that many of Dunham's tests were carried out in this transitional region 
must account for much of the experimental scatter. The theory does not repro- 



L
 

J
1
 

J
2

 
5

3
 

R
1

 

R
2

A
 

R
2

B
 

R
2

C
 

R
2

D
 

R
2

E
 

R
 2

P
 

R
2

G
 

R
4

 

R
ef

er
en

ce
 

a
, b

 

a
, c

 
a

, c
 

a
, c

 

a a a a a a a a a 

M
ac

h 
no

. 

0.
11

 

0.
30

 
0.

16
 

0.
30

 

0.
31

 

0.
31

 
0.

20
 

0.
32

 
0.

20
 

0.
32

 
0.

32
 

0.
34

 

0.
32

 

R
ey

no
ld

s 
n
o
. 

41
5,

00
0 

17
5,

00
0 

17
9,

00
0 

35
0,

00
0 

56
0,

00
0 

56
0,

00
0 

36
0,

00
0 

58
0,

00
0 

36
0,

00
0 

58
0,

00
0 

58
0,

00
0 

61
0,

00
0 

48
0,

00
0 

D
ia

m
et

er
 

(i
n

.)
 

6 2 2 2 3 3 3 3
 

3
 

3
 

3 3
 

2.
5 

S
p

an
 

(i
n

.)
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

24
 

2
4

 

S
lo

t 
1

 
(i

n
.)

 

0.
00

6 

0.
02

0 
0.

02
0 

0.
02

0 

0*
00

3-
0~

00
7*

 

0.
00

5 
0.

02
4 

0.
02

4 
0.

02
4 

0.
02

4 
0.

02
4 

0.
02

4 

0.
02

9 

S
lo

t 
2 

(i
n

.)
 

-
 

0.
01

0 
0.

01
0 

0.
01

0 

-
 

0.
00

5 
0.

02
6 

0.
02

6 
0.

01
3 

0.
01

3 
0.

01
3 

-
 

-
 

M
od

el
 d

et
ai

ls
 

\ 

S
lo

t 
1 

S
lo

t 
2 

nn
pl

e 
8 

an
gl

e 
0
 

90
 

-
 

90
 

15
0 

90
 

1
5
0
 

90
 

15
0 

90
 

-
 

90
 

12
0 

90
 

12
0 

90
 

1
2

0
 

90
 

12
0 

11
0 

1
40

 
90

 
-
 

90
 

-
 

c b
 

5
 

3 

90
 

12
0 

~ x 

R
es

u
lt

s 
fr

om
 ‘
R
’
 m
od

el
s 

(i
nc

lu
di

ng
 f

ig
ur

e 
3)

 a
re

 c
or

re
ct

ed
 f

or
 t

u
n

n
el

 w
al

l 
in

te
rf

er
en

ce
; 

re
su

lt
s 

fr
om

 ‘
L

’ a
n

d
 ‘
1
’
 m
od

el
s 

ar
e 

un
co

rr
ec

te
d.

 
* T

h
is

 s
lo

t 
op

en
ed

 u
p

 a
s 

th
e 

sl
o

t 
su

p
p

ly
 p

re
ss

ur
e 

in
cr

ea
se

d.
 

R
ef

er
en

ce
s:

 (
a
) D

u
n

h
am

 (
19

67
),

 (
b)

 L
oc

kw
oo

d 
(1

96
0)

, (
c)

 J
o

n
es

 &
 B

uc
ki

ng
ha

m
 (

19
64

).
 

T
A

B
L

E
 1
. 

L
is

t 
of

 e
x

p
er

im
en

ts
 



Circulation control by slot-blowing 507 

duce this effect. It is aimed at the turbulent separation condition only, so 
Reynolds number has a weak influence. 

Mach number can be of great importance at high values, where local velocities 
approach or exceed the speed of sound, but the theory is essentially incompres- 
sible, and takes no account of such effects. It does, however, influence the cal- 
culations indirectly, because, when a model has more than one slot and all the 
slots are supplied at  the same pressure, the pressure ratio across any slot is a 

FIGURE 8. Wind-tunnel model cross-sections. Only 
tests quoted are shown. 

those slots used in the 

t 
0 2 4 6 8 10 

Lift coefficient 

FIGURE 9. Base pressure. Reynolds number 3.6 x los. 
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direct function of Mach number. A change of Mach number therefore alters the 
flow distribution between the slots, as the following example shows. 

The N.G.T.E. tests were conducted a t  atmospheric pressure, so Reynolds 
number and Mach number only varied together. Jones & Buckingham (1964) 
however varied them independently. Figure lOa shows that a Mach number 

g.- 
( c )  

6 -  

0 R2B 
XR2C 

4 -  

2 -  

0 
0 

- (4 

53 +350000----- 

I I I 
0 0.2 04 0 6  0 8  1.0 0 01  0 2  0 3  0 4  05 

Momentum coefficient Momentum coefficient 

FIGURE 10. Effect of tunnel speed; (a)  effect of Mach number at  Re = 1-79 x 105, 
( b )  effect of Reynolds number at Mm = 0.3, ( c ) ,  (d )  changes in both Reynolds number and 
Mach number. 

change from 0-16 to 0.30 only affected the measured lift coefficient at  high lift 
coefficients (owing to high local Mach numbers). The difference between the 
theoretical calculations is that a t  C, = 4 

CJ = 0.232 from slot 1 +0-077 from slot 2 at 0.16 Mn.  
C, = 0-201 from slot 1 + 0-077 from slot 2 at 0.30 Nn. 

The second slot CJ is the same but as the slots were fed from a common supply 
the first slot took more flow at the lower Mach number. Figure 10b shows that 
Reynolds number had little influence on these tests. 

Figures 10a, b also illustrate very good general agreement between calculated 
and measured lift coefficients up to 5. 

Not all the tests were so consistent. Figures lOc, d show the effect of the same 
simultaneous Mach number and Reynolds number changes on two different 
builds of the same model in the same wind tunnel. In  the lower diagram the effect 
was small, but in the upper diagram the lift coefficient proved much higher at the 
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lower tunnel speed. The theory predicted higher lift coefficients at the higher 
speed in both cases and so was in fact very inaccurate at  the lower speed for one 
of the models. 

Figure 11 shows the influence of slot position. Figure 11 a compares results on 
the same model at different incidences, equivalent to moving both slots simul- 
taneously. More lift is generated when the slots are further back, and the increase 

4 

0 

90° 120' R2EO- 
1100 140' R2FX ---- 

X / 

1' x 

90' 120' R2Eo- 

0 0 1  0.2 0 3  0.4 0 5  
Momentum coefficient 

FIGURE 11. Effect of slot position, (a) both slots moved, (b )  second slot only moved. 

is accurately predicted. It is generally true of all tests that lift increases with 
incidence up to the stall (which occurs when the slots are behind the separation 
point) and that such increases are usually quite well predicted by the theory. 
Figure 11 b shows the effect of moving only the second slot further back. The two 
models, tested in different wind tunnels, gave similar results, but the theory 
predicted a loss of lift. In  general, the position of the second slot may become 
critical a t  low lift coefficients, as the slot may be after the separation point. In  
that event, experiments show that blowing through it can increase the lift, 
probably by forming a large separation bubble. The theory takes no account of 
this; the calculations have to assume the second-slot air expands uselessly to the 
base pressure. Consequently, the theory underestimates the lift generated when 
the second slot is too far back. 
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Figure 12 illustrates the influence of slot width. In  figure 12a the second slot 
has been halved in width and any given C, generates much more lift. The increase 
is correctly predicted by the theory. In  figure 12 b, both slots have been reduced 
to only 0-005 in. The increase in lift is very marked, but not as much as the theory 
predicts. 0.005 in. is much smaller than the thickness of the incoming boundary 
layer and it seems probable that Spalding’s profile family is too far removed 
from the true profile. The effectiveness of the wall jet is exaggerated. 

I X 

I 
/ / o  
,’ / 0 

lot 1 Slot 2 Expt 
Q240026 R2C o - Theory 

Q05 0.005 R2A t --- -- I Q24 0.013 R2E x 

6t 
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0 01  0 2  0 3  04 0 5  

Slot width Expt Theory I 00116 K4 X ---- 

Chord 
0001 , L 0 

0003-0007R1 0 - 
0008 R2Gb -- 

Momentum coefficient Momentum coefficient 

FIGURE 12. Effect of slot size, (a )  second slot width halved, ( b )  both slots narrowed, 
( c )  single-slot models. 

The poor performance of a very small slot is emphasized by figure 12c, which 
shows results given by four models with single slots of widely varying sizes. The 
theory predicts that the smaller the slot the greater will be the lift for a given C,. 
This is borne out by three of the models, but Lockwood’s model with by far the 
smallest slot in relation to its chord gives very poor lift, only a quarter of the 
estimated lift. The most noticeable feature of figure 12c, however, is of course 
that all the lift coefficients are badly overestimated by the theory. This must be 
due to the long length of surface between the slot and separation. In  a two-slot 
model there is a much shorter surface length between the last slot and separation 
for errors in the calculation of boundary-layer development to accumulate. 
Using Spalding’s original entrainment law would about halve the estimated lift, 
as required; this sensitivity to the entrainment assumptions will be mentioned 
again. 
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6. Discussion 
The sensitivity of the calculations to the various numerical assumptions made 

was checked. The chosen step size of 2" was justified (in relation to the accuracy 
of the marching procedure used) by showing that a reduction to 4" steps only 
altered the separation velocity by about one part in a thousand. Two changes in 
the transition assumptions were tried. Delaying transition until laminar separa- 
tion was predicted by Thwaites's criterion (Thwaites 1960) decreased the lift 
by about 5 % when the first slot was at 90" but increased it by about 5 % when 
the first slot was at 110"; no convincing evidence was found for adopting this 
transition criterion generally. Changing zE at transition by f 10 yo only changed 
the separation velocity by T 1 % (lower surface) and T 2.8 yo (upper surface). 
A much more serious sensitivity was to entrainment rate. The revised entrain- 
ment law introduced in the appendix to Spalding (1964) for x E  < 1 only altered 
the separation velocity about lyo, but the corresponding change for x E  > 1 
resulted usually in about a 50 % increase in predicted lift, and as much as 100 yo 
at high lift. The curvature correction is just as powerful in reducing the lift. It is 
not surprising that entrainment assumptions strongly influence the calculated 
lift. The errors in single-slot predictions and at high lift generally suggest that the 
entrainment rate needs to be known more accurately. The effect of changing the 
separation criterion from -0.06 to -0.065 was to increase the predicted lift 
by the order of 8 %. The effect of replacing calculated by measured base pressure 
coefficients depended, obviously, on the particular case, but did not improve 
accuracy significantly. There appear to be no experimental data on wall-jet 
separation on which to improve the criterion. 

Comparison between measured and calculated lift coefficients and base 
pressure coefficients, both those quoted here and others, shows that the trend of 
results is satisfactorily predicted but that numerical accuracy is poor in some 
circumstances. Particular weaknesses in the theory will now be identified. 

The most serious discrepancies have been encountered when the length of 
surface between the slots and the separation point was large, as at high lift, or 
when only one slot was employed. This points to the need for a more accurate 
entrainment law, as already discussed. There may also be a further point of 
principle involved. Normally, the boundary layer gets steadily 'nearer' separation 
in the sense that the parameter F2/&(I1 - 12) steadily decreases towards - 0.06. 
In  some calculations at high lift, however, the parameter reached a minimum 
( >  -0.06) and then steadily increased again, taking the wall jet round the 
surface to the rear stagnation point. This suggests a, different separation con- 
dition not now incorporated in the theory. If the last slot were much smaller 
than the incoming boundary layer, a free shear layer might perhaps develop 
and separate outside the wall jet. As already pointed out, the Spalding profile 
family cannot represent such a profile. This has led Professor Spalding to seek 
more general profiles in the later development of his theory. Similarly, difficul- 
ties in predicting entrainment have led him to adopt kinetic energy integral 
methods. 

Failure to account for the ability of a wall jet t o  entrain the boundary layer 
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again in a bubble although it had previously separated is a defect in the formula- 
tion of the flow model, but i t  is not very important in this application. 

Taking an overall view, the theory appears to represent most of the physical 
phenomena involved with reasonable quantitative accuracy. Subject to the 
provisos discussed, it is capable of predicting with fair accuracy the lift generated 
by circulation control on a circular cylinder, and is believed to be the first theory 
to do so. 

The approach used could be applied to other shapes of bodj7, though it is clear 
that where the surface radius of curvature becomes comparable with the 
boundary-layer thickness the boundary-layer calculation and the external 
potential flow calculation will react, and both may become difficult. The 'upper 
surface' procedure for calculating boundary-layer development to separation 
could be applied to flap-blowing situations more easily, because surface curvature 
never dominates the flow. 

7. Conclusions 
A theory has been developed on the basis of Spalding 's unified boundary- 

layer theory (Spalding 1964) for calculating the wall-jet strength needed to delay 
boundary-layer separation until a specified point in a given pressure distribution. 
This has enabled estimates to be made of the lift generated on a circular cylinder 
with narrow tangential slots on the upper surface for boundary-layer control. 
Comparisons with experimentally measured lift reported by Dunham (1967) show 
fair numerical agreement, except when the surface distance from the last slot 
to the separation point is large. No boundary-layer measurements are available 
for detailed comparisons. The theory has been programmed for a digital com- 
puter. It could be extended to a variety of boundary-layer control applications. 

Appendix Potential $ow representation 

Take axes Oxy through the centre of the circle, and let the free-stream velocity 
be parallel to Ox. The complex velocity potential W at any point X is given by 

The velocity components vz, vy parallel to Ox and Oy respectively are given by 

putting . dW 
v,-2.vy = -. 

The surface is x = - $c cos 8, y = +c sin 8, and, if the source lies on the surface a t  

0 = Oo, Z =  -&exp(-i@,). 
The velocity components at the surface parallel and normal to it are therefore 

0% 

v, = v, sin 8 + vy cos 8 

V ,  = vv sin 8 - v, cos 0 = 0. 
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Curvature correction 
The average value of 

over the ‘outer part’ of the boundary layer is approximately 

1 

= [ z ] : + % a j  0 x d t .  

Ignoring the logarithmic term which is only important between the velocity 
peak and the wall, the ‘outer part’ extends to the wall, and 

In the absence of curvature 
C = z,-l+a(z,+l). 

c = x E -  1, 

so the entrainment is increased in the ratio of C2, i.e. 

Combining this with Spalding’s formula for entrainment on a plane surface for 
z E >  

= 0.03uRe[(xE - 1) + 2a(x, + l ) ] .  
ds 

Nomenturn coeficient 

The momentum coefficient is given by 

1-46M2p,r,/qr ( M  < l ) ,  
C.l= { O-746p,rm(1.714- 1*350/r)/q ( M  > l ) ,  

where IS = slot widthlchord, 
p = static pressure outside the slot, 

p ,  = free-stream static pressure, 

M, = free-stream Mach number, 
q = @7M:p,, 

M = Mach number of wall jet within slot 
= [5(ro*B57 - I ) ] * ,  

roo = PIP,, 
r = PIP, 
P = stagnation pressure of wall-jet air as supplied tQ the slot. 

The numerical constants are for y = ratio of specific heats = 1.4. 

33 Fluid Mech. 33 
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